Connect with us

Hi, what are you looking for?

Reviews

Identification of tumor antigens with immunopeptidomics

1.Kloetzel, P. M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187 (2001).PubMed  Article  CAS  PubMed Central  Google Student  2.Coulie, P. G. et al. A mutated intron sequence codes for an antigenic peptide identified by cytolytic T lymphocytes on a human melanoma. Proc. Natl Acad. Sci. USA 92, 7976–7980 (1995).PubMed  PubMed Central …

Identification of tumor antigens with immunopeptidomics
  • 1.

    Kloetzel, P. M. Antigen processing by the proteasome. Nat. Rev. Mol. Cell Biol. 2, 179–187 (2001).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 2.

    Coulie, P. G. et al. A mutated intron sequence codes for an antigenic peptide identified by cytolytic T lymphocytes on a human melanoma. Proc. Natl Acad. Sci. USA 92, 7976–7980 (1995).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 3.

    Roche, P. A. & Furuta, Ok. The elegant facts of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol. 15, 203–216 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 4.

    Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952–961 (2003).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 5.

    Schumacher, T. N., Scheper, W. & Kvistborg, P. Cancer neoantigens. Annu. Rev. Immunol. 37, 173–200 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 6.

    Bianchi, V., Harari, A. & Coukos, G. Neoantigen-dispute adoptive cell therapies for most cancers: making T-cell products more deepest. Entrance. Immunol. 11, 1215 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 7.

    Curran, M. A. & Glisson, B. S. Unique hope for therapeutic most cancers vaccines in the technology of immune checkpoint modulation. Annu. Rev. Med. 70, 409–424 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 8.

    Haen, S. P., Löffler, M. W., Rammensee, H.-G. & Brossart, P. In direction of unusual horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat. Rev. Clin. Oncol. 17, 595–610 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 9.

    Kruger, S. et al. Advances in most cancers immunotherapy 2019: most modern traits. J. Exp. Clin. Cancer Res. 38, 268 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 10.

    Christofi, T., Baritaki, S., Falzone, L., Libra, M. & Zaravinos, A. Contemporary views in most cancers immunotherapy. Cancers (Basel) 11, 1472 (2019).

    Article 
    CAS 

    Google Student
     

  • 11.

    Laumont, C. M. et al. World proteogenomic prognosis of human MHC class I-associated peptides derived from non-canonical studying frames. Nat. Commun. 7, 10238 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 12.

    Sebestyen, E. et al. Sizable-scale prognosis of genome and transcriptome alterations in a few tumors unveils unusual most cancers-relevant splicing networks. Genome Res. 26, 732–744 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 13.

    Zhao, Q. et al. Proteogenomics uncovers a foremost repertoire of shared tumor-dispute antigens in ovarian most cancers. Cancer Immunol. Res. 8, 544–555 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 14.

    Ouspenskaia, T. et al. Thousands of unusual unannotated proteins amplify the MHC I immunopeptidome in most cancers. Preprint at bioRxiv https://doi.org/10.1101/2020.02.12.945840 (2020).

  • 15.

    Chen, J. et al. Pervasive functional translation of noncanonical human originate studying frames. Science 367, 1140–1146 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 16.

    Ilyas, S. & Yang, J. C. Landscape of tumor antigens in T cell immunotherapy. J. Immunol. 195, 5117–5122 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 17.

    Caballero, O. L. & Chen, Y. T. Cancer/testis (CT) antigens: capacity targets for immunotherapy. Cancer Sci. 100, 2014–2021 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 18.

    Tio, D. et al. Expression of most cancers/testis antigens in cutaneous melanoma: a systematic overview. Melanoma Res. 29, 349–357 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 19.

    Schooten, E., Di Maggio, A., van Bergen En Henegouwen, P. M. P. & Kijanka, M. M. MAGE-A antigens as targets for most cancers immunotherapy. Cancer Treat. Rev. 67, 54–62 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 20.

    D’Angelo, S. P. et al. Antitumor exercise associated with extended persistence of adoptively transferred NY-ESO-1 c259T cells in synovial. Sarcoma 8, 944–957 (2018).


    Google Student
     

  • 21.

    Rapoport, A. P. et al. NY-ESO-1–dispute TCR–engineered T cells mediate sustained antigen-dispute antitumor ends up in myeloma. Nat. Med. 21, 914–921 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 22.

    Robbins, P. F. et al. A pilot trial the exercise of lymphocytes genetically engineered with an NY-ESO-1–reactive T-cell receptor: long-time length bid-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 23.

    Laumont, C. M. & Perreault, C. Exploiting non-canonical translation to title unusual targets for T cell-essentially essentially based most cancers immunotherapy. Cell. Mol. Existence Sci. 75, 607–621 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 24.

    Moreau-Aubry, A. et al. A processed pseudogene codes for a brand unusual antigen identified by a CD8+ T cell clone on melanoma. J. Exp. Med. 191, 1617–1623 (2000).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 25.

    Li, L.-J., Leng, R.-X., Fan, Y.-G., Pan, H.-F. & Ye, D.-Q. Translation of noncoding RNAs: focal point on lncRNAs, pri-miRNAs, and circRNAs. Exp. Cell Res. 361, 1–8 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 26.

    Charpentier, M. et al. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens. Oncotarget 7, 59704–59713 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 27.

    Roulois, D. et al. DNA-demethylating brokers aim colorectal most cancers cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 28.

    Chiappinelli, Ok. B. et al. Inhibiting DNA methylation causes an interferon response in most cancers by the exercise of dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 29.

    Attermann, A. S., Bjerregaard, A. M., Saini, S. Ok., Gronbaek, Ok. & Hadrup, S. R. Human endogenous retroviruses and their implication for immunotherapeutics of most cancers. Ann. Oncol. 29, 2183–2191 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 30.

    Vigneron, N. et al. An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587–590 (2004).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 31.

    Delong, T. et al. Pathogenic CD4 T cells in kind 1 diabetes acknowledge epitopes fashioned by peptide fusion. Science 351, 711–714 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 32.

    Yewdell, J. W. & Holly, J. DRiPs fetch molecular. Curr. Opin. Immunol. 64, 130–136 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 33.

    Welters, M. J. et al. Induction of tumor-dispute CD4+ and CD8+ T-cell immunity in cervical most cancers sufferers by a human papillomavirus kind 16 E6 and E7 long peptides vaccine. Clin. Cancer Res. 14, 178–187 (2008).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 34.

    Morgan, R. A. et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 36, 133–151 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 35.

    Skipper, J. C. et al. Mass-spectrometric overview of HLA-A*0201-associated peptides identifies dominant naturally processed kinds of CTL epitopes from MART-1 and gp100. Int J. Cancer 82, 669–677 (1999).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 36.

    Wolf, B. et al. Safety and tolerability of adoptive cell therapy in most cancers. Drug Saf. 42, 315–334 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 37.

    Purcell, A. W., Ramarathinam, S. H. & Ternette, N. Mass spectrometry-essentially essentially based identification of MHC-sure peptides for immunopeptidomics. Nat. Protoc. 14, 1687–1707 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 38.

    Caron, E. et al. Analysis of main histocompatibility advanced (MHC) immunopeptidomes the exercise of mass spectrometry. Mol. Cell. Proteom. 14, 3105–3117 (2015).

    Article 
    CAS 

    Google Student
     

  • 39.

    Ritz, D., Kinzi, J., Neri, D. & Fugmann, T. Files-self reliant acquisition of HLA class I peptidomes on the Q exactive mass spectrometer platform. Proteomics 17, 1700177 (2017).

    Article 
    CAS 

    Google Student
     

  • 40.

    Gillet, L. C. et al. Centered recordsdata extraction of the MS/MS spectra generated by recordsdata-self reliant acquisition: a brand unusual belief for consistent and true proteome prognosis. Mol. Cell. Proteom. 11, O111.016717 (2012).

    Article 
    CAS 

    Google Student
     

  • 41.

    Brunner, A.-D. et al. Extremely-high sensitivity mass spectrometry quantifies single-cell proteome adjustments upon perturbation. Preprint at bioRxiv 2020.2012.2022.423933 (2020).

  • 42.

    Tsou, C. C. et al. DIA-Umpire: complete computational framework for recordsdata-self reliant acquisition proteomics. Nat. Techniques 12, 258–264 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 43.

    Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single scurry by optimizing fresh LC-MS instrumentation and data prognosis technique. Mol. Omics 15, 348–360 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 44.

    Gessulat, S. et al. Prosit: proteome-huge prediction of peptide tandem mass spectra by deep studying. Nat. Techniques 16, 509–518 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 45.

    Croft, N. P. et al. Kinetics of antigen expression and epitope presentation at some point of virus an infection. PLoS Pathog. 9, e1003129 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 46.

    Hassan, C. et al. Apt quantitation of MHC-sure peptides by application of isotopically labeled peptide MHC complexes. J. Proteom. 109, 240–244 (2014).

    Article 
    CAS 

    Google Student
     

  • 47.

    Croft, N. P., Purcell, A. W. & Tscharke, D. C. Quantifying epitope presentation the exercise of mass spectrometry. Mol. Immunol. 68, 77–80 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 48.

    Tan, C. T., Croft, N. P., Dudek, N. L., Williamson, N. A. & Purcell, A. W. Express quantitation of MHC-sure peptide epitopes by selected response monitoring. Proteomics 11, 2336–2340 (2011).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 49.

    Kapp, E. A. et al. An overview, comparison, and true benchmarking of various publicly on hand MS/MS search algorithms: sensitivity and specificity prognosis. Proteomics 5, 3475–3490 (2005).

  • 50.

    Kapp, E. & Schutz, F. Overview of tandem mass spectrometry (MS/MS) database search algorithms. Curr. Protoc. Protein Sci. 49, 25.2.1–25.2.19 (2007).

    Article 

    Google Student
     

  • 51.

    Elias, J. E. & Gygi, S. P. Goal-decoy search technique for increased self perception in huge-scale protein identifications by mass spectrometry. Nat. Techniques 4, 207–214 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 52.

    Zhang, J. et al. PEAKS DB: de novo sequencing assisted database look pretty and true peptide identification. Mol. Cell. Proteom. 11, M111.010587 (2012).

    Article 
    CAS 

    Google Student
     

  • 53.

    Shan, P. & Tran, H. Integrating database search and de novo sequencing for immunopeptidomics with DIA potential. J. Biomol. Tech. 30, S23 (2019).

    PubMed Central 

    Google Student
     

  • 54.

    Faridi, P., Purcell, A. W. & Croft, N. P. In immunopeptidomics we desire a sniper in location of a shotgun. Proteomics 18, e1700464 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 55.

    Thompson, A. et al. Tandem mass tags: a peculiar quantification technique for comparative prognosis of advanced protein combinations by MS/MS. Anal. Chem. 75, 1895–1904 (2003).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 56.

    Pfammatter, S. et al. Extending the comprehensiveness of immunopeptidome analyses the exercise of isobaric peptide labeling. Anal. Chem. 92, 9194–9204 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 57.

    Ramarathinam, S. H. et al. A peptide-signal amplification technique for the detection and validation of neoepitope presentation on most cancers biopsies. Preprint at bioRxiv https://doi.org/10.1101/2020.06.12.145276 (2020).

  • 58.

    Stopfer, L. E., Mesfin, J. M., Joughin, B. A., Lauffenburger, D. A. & White, F. M. Multiplexed relative and absolute quantitative immunopeptidomics unearths MHC I repertoire alterations prompted by CDK4/6 inhibition. Nat. Commun. 11, 2760 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 59.

    d’Atri, V. et al. Including a brand unusual separation dimension to MS and LC–MS: what’s the utility of ion mobility spectrometry? J. Sep. Sci. 41, 20–67 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 60.

    Pfammatter, S. et al. A unusual differential ion mobility instrument expands the depth of proteome coverage and the sensitivity of multiplex proteomic measurements. Mol. Cell. Proteom. 17, 2051–2067 (2018).

    Article 
    CAS 

    Google Student
     

  • 61.

    Pfammatter, S., Bonneil, E. & Thibault, P. Enchancment of quantitative measurements in multiplex proteomics the exercise of high-field uneven waveform spectrometry. J. Proteome Res. 15, 4653–4665 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 62.

    Meier, F. et al. Online parallel accumulation-serial fragmentation (PASEF) with a peculiar trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).

    Article 
    CAS 

    Google Student
     

  • 63.

    Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational techniques. Nat. Techniques 11, 1114–1125 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 64.

    Zhang, M. et al. RNA improving derived epitopes feature as most cancers antigens to elicit immune responses. Nat. Commun. 9, 3919 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 65.

    Wei, Z. et al. The landscape of tumor fusion neoantigens: a pan-most cancers. Anal. iScience 21, 249–260 (2019).

    Article 

    Google Student
     

  • 66.

    Löffler, M. W. et al. Multi-omics discovery of exome-derived neoantigens in hepatocellular carcinoma. Genome Med. 11, 28 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 67.

    Kalaora, S. et al. Exhaust of HLA peptidomics and complete exome sequencing to title human immunogenic neo-antigens. Oncotarget 7, 5110–5117 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 68.

    Bassani-Sternberg, M., Pletscher-Frankild, S., Jensen, L. J. & Mann, M. Mass spectrometry of human leukocyte antigen class I peptidomes unearths sturdy results of protein abundance and turnover on antigen presentation. Mol. Cell. Proteom. 14, 658–673 (2015).

    Article 
    CAS 

    Google Student
     

  • 69.

    Khodadoust, M. S. et al. Antigen presentation profiling unearths recognition of lymphoma immunoglobulin neoantigens. Nature 543, 723–727 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 70.

    Bassani-Sternberg, M. et al. Express identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 7, 13404 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 71.

    Binz, P. A. et al. Proteomics Requirements Initiative extended FASTA layout. J. Proteome Res. 18, 2686–2692 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 72.

    Eng, J. Ok. & Deutsch, E. W. Extending comet for global amino acid variant and put up-translational modification prognosis the exercise of the PSI extended FASTA layout. Proteomics 72, e1900362 (2020).

    Article 
    CAS 

    Google Student
     

  • 73.

    Elias, J. E. & Gygi, S. P. Goal-decoy search technique for mass spectrometry-essentially essentially based proteomics. Techniques Mol. Biol. 604, 55–71 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 74.

    Gupta, N., Bandeira, N., Keich, U. & Pevzner, P. A. Goal-decoy potential and groundless discovery charge: when things might maybe maybe well well also simply work disagreeable. J. Am. Soc. Mass Spectrom. 22, 1111–1120 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 75.

    Tanner, S. et al. Enhancing gene annotation the exercise of peptide mass spectrometry. Genome Res. 17, 231–239 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 76.

    Chong, C. et al. Constructed-in proteogenomic deep sequencing and analytics precisely title non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11, 1293 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 77.

    Laumont, C. M. et al. Noncoding areas are the principle supply of targetable tumor-dispute antigens. Sci. Transl. Med. 10, eaau5516 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 78.

    Neat, A. C. et al. Intron retention is a supply of neoepitopes in most cancers. Nat. Biotechnol. 36, 1056–1058 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 79.

    Attig, J. et al. LTR retroelement growth of the human most cancers transcriptome and immunopeptidome printed by de novo transcript meeting. Genome Res. 29, 1578–1590 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 80.

    Kong, Y. et al. Transposable factor expression in tumors is expounded with immune infiltration and increased antigenicity. Nat. Commun. 10, 5228 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 81.

    Shraibman, B., Melamed Kadosh, D., Barnea, E. & Admon, A. HLA peptides derived from tumor antigens prompted by inhibition of DNA methylation for pattern of drug-facilitated immunotherapy. Mol. Cell. Proteom. 15, 3058–3070 (2016).

    Article 
    CAS 

    Google Student
     

  • 82.

    Calviello, L. et al. Detecting actively translated originate studying frames in ribosome profiling recordsdata. Nat. Techniques 13, 165–170 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 83.

    Erhard, F. et al. Improved Ribo-seq enables identification of cryptic translation events. Nat. Techniques 15, 363–366 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 84.

    Ingolia, N. T. et al. Ribosome profiling unearths pervasive translation originate air of annotated protein-coding genes. Cell Salvage. 8, 1365–1379 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 85.

    Slavoff, S. A. et al. Peptidomic discovery of speedy originate studying frame–encoded peptides in human cells. Nat. Chem. Biol. 9, 59–64 (2013).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 86.

    Sarkizova, S. et al. A huge peptidome dataset improves HLA class I epitope prediction across many of the human inhabitants. Nat. Biotechnol. 38, 199–209 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 87.

    Abelin, J. G. et al. Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more true epitope prediction. Immunity 46, 315–326 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 88.

    Warren, E. H. et al. An antigen produced by splicing of noncontiguous peptides in the reverse mutter. Science 313, 1444–1447 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 89.

    Dalet, A. et al. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc. Natl Acad. Sci. USA 108, E323–E331 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 90.

    Michaux, A. et al. A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a protracted peptide fragment followed by trimming. J. Immunol. 192, 1962–1971 (2014).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 91.

    Hanada, Ok., Yewdell, J. W. & Yang, J. C. Immune recognition of a human renal most cancers antigen via put up-translational protein splicing. Nature 427, 252–256 (2004).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 92.

    Liepe, J. et al. A huge part of HLA class I ligands are proteasome-generated spliced peptides. Science 354, 354–358 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 93.

    Faridi, P. et al. A subset of HLA-I peptides are no longer genomically templated: evidence for cis- and trans-spliced peptide ligands. Sci. Immunol. 3, eaar3947 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Student
     

  • 94.

    Liepe, J., Sidney, J., Lorenz, F. Ok. M., Sette, A. & Mishto, M. Mapping the MHC class I–spliced immunopeptidome of most cancers cells. Cancer Immunol. Res. 7, 62–76 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 95.

    Paes, W. et al. Contribution of proteasome-catalyzed peptide cis-splicing to viral focusing on by CD8+ T cells in HIV-1 an infection. Proc. Natl Acad. Sci. USA 116, 24748–24759 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 96.

    Faridi, P. et al. Spliced peptides and cytokine-driven adjustments in the immunopeptidome of melanoma. Cancer Immunol. Res. 8, 1322–1334 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 97.

    Mylonas, R. et al. Estimating the contribution of proteasomal spliced peptides to the HLA-I ligandome. Mol. Cell. Proteom. 17, 2347–2357 (2018).

    Article 
    CAS 

    Google Student
     

  • 98.

    Rolfs, Z., Solntsev, S. Ok., Shortreed, M. R., Frey, B. L. & Smith, L. M. World identification of put up-translationally spliced peptides with neo-fusion. J. Proteome Res. 18, 349–358 (2019).

    PubMed 
    CAS 
    PubMed Central 

    Google Student
     

  • 99.

    Erhard, F., Dölken, L., Schilling, B. & Schlosser, A. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8, 1018–1026 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 100.

    Vigneron, N., Ferrari, V., Stroobant, V., Abi Habib, J. & Van den Eynde, B. J. Peptide splicing by the proteasome. J. Biol. Chem. 292, 21170–21179 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 101.

    Dalet, A., Vigneron, N., Stroobant, V., Hanada, Ok. & Van den Eynde, B. J. Splicing of far-off peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast recount factor-5. J. Immunol. 184, 3016–3024 (2010).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 102.

    Henry, V. J., Bandrowski, A. E., Pepin, A. S., Gonzalez, B. J. & Desfeux, A. OMICtools: an informative itemizing for multi-omic recordsdata prognosis. Database (Oxford) 2014, bau069 (2014).

    Article 
    CAS 

    Google Student
     

  • 103.

    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 replace. Nucleic Acids Res. 46, W537–W544 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 104.

    Nesvizhskii, A. I. et al. Dynamic spectrum quality overview and iterative computational prognosis of shotgun proteomic recordsdata: against more efficient identification of put up-translational adjustments, sequence polymorphisms, and unusual peptides. Mol. Cell. Proteom. 5, 652–670 (2006).

    Article 
    CAS 

    Google Student
     

  • 105.

    Andreatta, M. et al. MS-Rescue: a computational pipeline to amplify the quality and yield of immunopeptidomics experiments. Proteomics 19, e1800357 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 106.

    Rolfs, Z., Müller, M., Shortreed, M. R., Smith, L. M. & Bassani-Sternberg, M. Comment on ‘A subset of HLA-I peptides are no longer genomically templated: evidence for cis- and trans-spliced peptide ligands’. Sci. Immunol. 4, eaaw1622 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 107.

    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, screen, and the future. Cell 168, 613–628 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 108.

    Marcu, A. et al. The HLA Ligand Atlas. A useful resource of pure HLA ligands presented on benign tissues. J. Immunother. Cancer 9, e002071 (2019).

    Article 

    Google Student
     

  • 109.

    Schatton, T. et al. Identification of cells initiating human melanomas. Nature 451, 345–349 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 110.

    Lang, D., Mascarenhas, J. B. & Shea, C. R. Melanocytes, melanocyte stem cells, and melanoma stem cells. Clin. Dermatol. 31, 166–178 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Student
     

  • 111.

    Kassiotis, G. & Stoye, J. P. Immune responses to endogenous retroelements: taking the tainted with the factual. Nat. Rev. Immunol. 16, 207–219 (2016).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 112.

    Rycaj, Ok. et al. Cytotoxicity of human endogenous retrovirus Ok–dispute T cells against autologous ovarian. Cancer Cells 21, 471–483 (2015).

    CAS 

    Google Student
     

  • 113.

    Saini, S. Ok. et al. Human endogenous retroviruses possess a reservoir of T cell targets in hematological cancers. Nat. Commun. 11, 5660 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 114.

    Mullins, C. S. & Linnebacher, M. Endogenous retrovirus sequences as a peculiar class of tumor-dispute antigens: an example of HERV-H env encoding sturdy CTL epitopes. Cancer Immunol. Immun. 61, 1093–1100 (2012).

    Article 
    CAS 

    Google Student
     

  • 115.

    Tu, X. et al. Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce sturdy cytotoxic T lymphocyte responses. Virol. Sin. 32, 280–289 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 116.

    Belgnaoui, S. M., Gosden, R. G., Semmes, O. J. & Haoudi, A. Human LINE-1 retrotransposon induces DNA atomize and apoptosis in most cancers cells. Cancer Cell Int. 6, 13 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 117.

    Scott, E. C. et al. A hot L1 retrotransposon evades somatic repression and initiates human colorectal most cancers. Genome Res. 26, 745–755 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 118.

    Ott, P. A. et al. An immunogenic deepest neoantigen vaccine for sufferers with melanoma. Nature 547, 217–221 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 119.

    Sahin, U. et al. Personalized RNA mutanome vaccines mobilize poly-dispute therapeutic immunity against most cancers. Nature 547, 222–226 (2017).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 120.

    Ebrahimi-Nik, H. et al. Mass spectrometry driven exploration unearths nuances of neoepitope-driven tumor rejection. JCI Insight 5, e129152 (2019).

    Article 

    Google Student
     

  • 121.

    Smith, C. C. et al. Replacement tumour-dispute antigens. Nat. Rev. Cancer 19, 465–478 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 122.

    Jackson, R. et al. The interpretation of non-canonical originate studying frames controls mucosal immunity. Nature 564, 434–438 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 123.

    Muller, M., Gfeller, D., Coukos, G. & Bassani-Sternberg, M. ‘Hotspots’ of antigen presentation printed by human leukocyte antigen ligandomics for neoantigen prioritization. Entrance. Immunol. 8, 1367 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 124.

    Schittenhelm, R. B. et al. A complete prognosis of constitutive naturally processed and presented HLA-C*04: 01 (Cw4)-dispute peptides. Tissue Antigen. 83, 174–179 (2014).

    Article 
    CAS 

    Google Student
     

  • 125.

    Schuster, H. et al. The immunopeptidomic landscape of ovarian carcinomas. Proc. Natl Acad. Sci. USA 114, E9942–E9951 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • 126.

    Sarkizova, S. et al. A huge peptidome dataset improves HLA class I epitope prediction across many of the human inhabitants. Nat. Biotechnol. 38, 199–209 (2020).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 127.

    Keskin, D. B. et al. Neoantigen vaccine generates intratumoral T cell responses in Share Ib glioblastoma trial. Nature 565, 234–239 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Student
     

  • 128.

    Shraibman, B. et al. Identification of tumor antigens amongst the HLA peptidomes of glioblastoma tumors and plasma. Mol. Cell. Proteom. 17, 2132–2145 (2018).

    Article 
    CAS 

    Google Student
     

  • 129.

    Ternette, N. et al. Immunopeptidomic profiling of HLA-A2-obvious triple negative breast most cancers identifies capacity immunotherapy aim antigens. Proteomics 18, 1700465 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Student
     

  • Source

    Click to comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    You May Also Like